
Imperial College of Science,

Technology and Medicine

(University of London)

Department of Computing

PIPE2: Platform Independent

Petri Net Editor

by

Nadeem Akharware MEng. MIEE

Submitted in partial fulfilment

of the requirements for the MSc.

Degree in Computing Science of the

University of London and for the

Diploma of Imperial College of

Science, Technology and Medicine.

September 2005

 ii

 iii

Abstract

Petri nets are a modelling formalism for describing concurrency and
synchronization in distributed systems. PIPE2 is the “Platform Independent Petri
Net Editor”, a Java based, open source, graphical tool for drawing and analysing
Petri nets. The applications GSPN analysis module was greatly improved to
handle hundreds of thousand of tangible states rather than just 1000. State
space exploration algorithms and memory efficient schemes to enable this
improvement are discussed along with numerical analysis methods for solving
the steady state distribution. In addition to improving the GSPN analysis module,
some user interface enhancements and bug fixes were made and are also
outlined.

 iv

Acknowledgements

I would like to thank the following people:

• My supervisor Dr. William J. Knottenbelt for suggesting the project and advising me on it
for the past 4 months.

• My family for putting up with me taking over the computer at home for the past year of the

MSc.

• My fiancé Nazli for motivating me with a wedding date at the end of the project and for
helping me take my mind off the project.

 v

Contents

Abstract ..iii
Acknowledgements ...iv
1. Introduction ..1
2. Background Theory ...3

2.1. Petri Nets ...3
2.2. Generalised Stochastic Petri Nets (GSPN’s) ...6
2.3. Markov Theory ...7

2.3.1. Random Variables..7
2.3.2. Stochastic Processes ...7
2.3.3. Markov Processes..8
2.3.4. Continuous-Time Markov Chains..8

2.4. An Example.. 10
3. State Space Exploration ..13

3.1. A basic algorithm.. 13
3.2. Memory and Time Efficient Strategies... 14

3.2.1. A Linked List .. 14
3.2.2. A Hash Table with Full State Information .. 15
3.2.3. A Probabilistic Dynamic Technique... 16
3.2.4. The primary and secondary hashing functions h1 and h2 18
3.2.5. Vanishing State Elimination.. 19

4. Steady State Solution ..24
4.1. Direct Methods ... 24
4.2. Iterative Methods.. 24

4.2.1. Jacobi’s Method ... 25
4.2.2. Gauss-Siedel ... 25

4.3. Efficient Memory Utilisation and Computation ... 25
5. Results ..28

5.1. State Space Exploration ... 28
5.1.1. A simple GSPN .. 28
5.1.2. A GSPN with Vanishing States ... 29
5.1.3. The Courier Protocol Software GSPN... 31

5.2. Steady State Solution ... 34
5.2.1. A Simple GSPN.. 34
5.2.2. A GSPN with Vanishing States ... 35
5.2.3. The Courier Protocol Software GSPN... 36

6. Other Work..38
6.1. Bug Fixing .. 38

6.1.1. File Save Bug... 38
6.1.2. Edit Arc Weight Bug ... 38
6.1.3. Invariant Analysis Bug.. 38
6.1.4. HTML File Save Formatting.. 40
6.1.5. Code Optimisation.. 41

6.2. User Interface Enhancements... 41
6.3. Product Marketing .. 45

7. Conclusion & Future Work ..46
7.1. Summary.. 46
7.2. Future Work ... 47

Appendix A – User Guide ...48
Installation... 48
Analysing a GSPN... 48

Bibliography ..52

 vi

 1

1. Introduction

PIPE, the Platform Independent Petri Net Editor, began its life as an MSc. Group
project in 2003. The aim was to create an application for editing and analysing
Petri nets which are a formal system for describing concurrency and
synchronization in distributed systems. However, there were already tools
available to do this. A list of Petri net software applications can be found at the
Petri nets world web-site: http://www.informatik.uni-hamburg.de/TGI/PetriNets/
In fact, Imperial College has already developed a highly capable Petri net
analysis tool called DNAmaca which is capable of running on a parallel processor
system and analyse extremely large Petri net models.

Existing Petri net tool functionality is limited to that which their creators provide at
the time of writing [BC+03]. The key difference with PIPE was to be ease of use,
platform independence and easy extensibility. In this respect, the initial project
was partially successful in that it was platform independent having been written in
Java, open source, all code being available at www.sourceforge.net, and also
extensible through the ability to easily add new analysis modules. Ease of use
however was lacking to a large extent.

The following year, a new MSc. group project team took on the task of improving
the user interface and bug fixing the analysis modules. They had five areas to
target for development [BC+04]:

• Review of existing code and documentation including optimisation and
bug fixing,

• Extension of capabilities to support Generalised Stochastic Petri Nets
including representational and editing tools and relevant analysis modules

• Interfacing with DNAmaca for Petri net analysis
• Improved editing tools – improved interface and functionality for creating

nets
• GUI – improved interface and functionality for working with nets.

They were broadly successful and along the way a new official branch of the
project was created at ‘sourceforge.net’ called PIPE2. However there were still
some shortcomings with the tool. The Petri net editing interface was still not as
easy to use as it could be and the analysis capability was so limited that PIPE2
could not really be used for any serious analysis of generalised stochastic Petri
net’s.

In 2005, the task of enhancing the GUI and analysis capabilities of PIPE2 was
offered as an individual MSc. project. There were three areas that needed work:

• Fix a number of moderately serious bugs in the user interface
- Saving files did not always work

 2

- The invariant analysis module did not give the correct analysis
results and did not use the correct labels for the results

- Changing arc weights resulted in an error which was nonsensical
- Other as yet unknown bugs that may be found along the way

• Improve the arc editing tool. The options for editing an arc once it was
drawn were limited and consisted of being able to delete an arc or change
its weight.

• Improve the GSPN analysis capability. The existing capability was so
severely limited that it was useless and all analysis of any real models had
to be handed off to DNAmaca.

The rest of this report describes all the work carried out on the tasks listed above.
The report first covers background theory on Petri nets including Generalised
Stochastic Petri Nets (GSPN’s), and also covers Markov theory so that it is
possible to understand how GSPN’s can be analysed. The next two chapters
then cover the background theory of how GSPN analysis can be implemented in
software and also how it was actually implemented in PIPE2. Chapter 5 then
covers testing and results followed by a further chapter covering all the bug fixing
and user interface enhancement.

 3

2. Background Theory

2.1. Petri Nets

Petri nets are a formal method for describing the concurrency and
synchronization present in distributed systems or processes. They were first
described by Carl Adam Petri in 1962 as a method for determining the
correctness of concurrent systems. Many variations of the original Petri nets now
exist which have extended their usefulness and they have been used for
modelling communications protocols, parallel programs and distributed
databases amongst other things [Kno99].

The simplest type of Petri nets, sometimes referred to as ‘ordinary’ Petri nets
[BK02], are Place-Transition nets. These consist of 4 elements:

• Places, drawn as circles. These represent conditions or objects for
example, program variables. Places contain zero or more,

• Tokens, drawn as black dots. These represent the specific value of the

condition or object for example, the value of the program variable. The
pattern/arrangement of tokens across all the places in a place-transition
net is called the marking.

• Transitions, drawn as rectangles. Transitions model activities which

result in a change in the values of conditions and objects and hence a
change in the marking of the place-transition net.

• Arcs, drawn as arrows between places and transitions. Arcs show the

relationships between specific places and transitions and thus indicate
which objects and conditions are changed by which activity.

Place-transition nets are bipartite graphs meaning a place can only be connected
to a transition and vice-versa. Places cannot be connected to places and
transitions cannot be connected to transitions.

Figure 2-1 A Place-Transition Net

 4

Figure 2-1 shows a simple place-transition net with six places, four transitions
and eight arcs. One of the places (P0) contains a token. We say P0 is an input
place for transition T0 and accordingly T0 is an output transition of P0. P1 is an
output place of T0 and accordingly T0 is an input transition for P1 and so on.
Places and transitions can have more than one input or output element as can be
seen with T1, T2, P2 and P3. Places and transitions can also be unconnected
such as P5 and T3. As expected, such elements do not have any influence on
the rest of the net and can be neglected during analysis.
T0 is said to be ‘enabled’ as its input place has a token on it. The number of
tokens required on input places for a transition to be enabled can be shown by
adding a weight to the arc joining them. If all the input places for a transition have
the required number of tokens, the transition can ‘fire’. This destroys the number
of tokens specified by the arc weights from the input places and creates new
tokens on the output places. Note however that an enabled transition does not
have to fire. The weight on arcs from transitions to their output places identifies
the number of tokens created on an output place when the transition fires. By
convention, arc weights of 1 are not shown explicitly.
A place-transition net can be formally described as follows [BK02]:

A place-transition net is a 5-tuple PN = (P, T, I-, I+, M0) where

• P = {p1,…,pn} is a finite and non-empty set of places,
• T = {t1,…,tn} is a finite and non-empty set of transitions,
• P ∩ T = Ø,
• I-, I+ : P×T → N0

1 are the backward and forward incidence functions
respectively,

• M0 : P → N0 is the initial marking.

The incidence function’s specify the connections between places and transitions.
If I-(p,t) > 0, an arc leads from place p to transition t. As such, I- is called the
backward incidence function of transition t. I- maps into the natural numbers and
is the weight of the arc from p to t, as such it is the number of tokens destroyed
on place p when transition t fires. Similarly, if I+(p,t) > 0, an arc leads from
transition t to place p. It is called the forward incidence function and is the
number of tokens created on place p when t fires.

With this formal definition in place we can now say the following:

• A marking of a place-transition net is a function M : P → N0, where M(p) is
the number of token on place p.

• A transition t ∈ T is enabled at M iff2 M(p) ≥ I-(p,t), ∀p ∈ P.
• A transition t ∈ T enabled at marking M, may fire resulting in a new

marking M’ where M’(p) = M(p) - I-(p,t) + I+(p,t), ∀p ∈ P.

1 N denotes the set of positive integers and N0 additionally includes 0.
2 Iff means “if and only if”.

 5

• We say M’ is directly reachable from M, written as M → M’. Let →* be the
reflexive and transitive closure of →. A marking M’ is reachable from M iff
M →* M’

• The reachability set of a place-transition net PN is R(PN):= {M|M0 →*M}
• We say a place-transition net is bounded iff ∀p ∈ P : ∃ k ∈ N0 : ∀M ∈

R(PN) : M(p) ≤ k

The most common way to analyse a place-transition net is to analyse its
reachability set as all properties are defined from this set.

Figure 2-2 A place transition net

Figure 2-3 The corresponding reachability graph

Figure 2-2 and Figure 2-3 show a place-transition net and its corresponding
reachability graph. The nodes in the graph are markings of the place-transition
net. Two nodes M and M’ are connected with a directed arc if M → M’ and the
arc is labelled with the transition enabled in M which fires to lead to M’. The
graph is obtained by starting with the initial marking of the place-transition net as
a root node and then adding directly reachable markings as leaves. The process
is then repeated with the leaves and so on. If we reach a marking which has
been previously explored, an arc is drawn back to that marking and it obviously
does not need to be explored further. In the case of unbounded nets, the
reachability set is infinite. Special notation is used for these sets but will not be
covered here.

(1,0,0)

(0,1,0) (0,0,1)

t0 t1 t3 t2

 6

2.2. Generalised Stochastic Petri Nets (GSPN’s)

Place-transition nets can be used to test a system for certain desired
‘correctness’ properties such as boundedness, liveness and freedom from
deadlock. However, place-transition nets do not include time in the model making
it impossible to analyse performance of a system. As such place-transition nets
have been extended to include several types of time-augmented Petri nets.
Generalised Stochastic Petri Nets fall into the category of time-augmented Petri
nets and are a flexible and widely used representation. GSPN’s have two types
of transitions, immediate transitions and timed transitions. Immediate transitions
are shown in Petri nets as filled rectangles. Timed transitions are shown as
empty rectangles. Once enabled, immediate transitions fire in zero time. Timed
transitions fire after a random exponentially distributed time. More than one
transition can be enabled in any particular marking M. If the set of enabled
transitions ENT(M) contains any immediate transitions, then only the immediate
transitions are considered enabled and no timed transition can fire. In other
words, in a GSPN firing of immediate transitions has priority over timed
transitions.

Using and extending the same notation and definitions from the previous section
we can describe GSPN’s as follows:

A GSPN is a 4-tuple GSPN = (PN, T1, T2, W) where

• PN = (P, T, I-, I+, M0) is the underlying place-transition net
• T1 ⊆ T is the set of timed transitions, T1 ≠ Ø
• T2 ⊂ T is the set of immediate transitions, T1 ∩ T2 = Ø , T = T1 ∪ T2
• W = (w1, …, w|T|) is an array whose entry wi ∈ R+3 is a (possibly marking

dependent) rate of a negative exponential distribution specifying the firing
delay when transition ti is a timed transition or is a (possibly marking
dependent) firing weight when transition ti is an immediate transition.

Each distinct marking in the reachability set of a GSPN is a state of the system.
As such the terms marking and state are interchangeable when discussing
GSPN’s. The reachability set can also be referred to as the state space of the
Petri net. The state space of a GSPN actually contains two types of markings. As
immediate transitions fire in zero time, markings in which immediate transitions
are enabled have a sojourn time of zero. These markings are called vanishing
states as they will never be seen by an observer who randomly examines the
stochastic process of a GSPN. States in which only timed transitions are enabled
will be seen by an observer and as such are referred to as tangible states.
Vanishing states have no effect on the performance statistics derived for a GSPN
due to their zero sojourn time and so they are usually eliminated during or after

3 R+ is the set of positive real numbers

 7

state space generation [Kno96]. Throughout the rest of this report, it will be
assumed that the GSPN has a finite reachability set.

In order to analyse a GSPN, we utilise a branch of mathematics called Markov
theory.

2.3. Markov Theory

2.3.1. Random Variables

A variable is random and denoted as χ if we cannot tell for certain what its value
will be. The random variable χ is said to be discrete if the set of values it can be
is countable (but not necessarily finite). As we do not know for certain what the
value of χ is, we say it will have a value x with a probability of pχ(x),

pχ(x) = P[χ=x]
Eq. 2-1

where x is a real number and 0 ≤ pχ(x) ≤ 1 for all values of x. The cumulative
distribution function of a random variable χ is:

F χ(a) = Σx≤a pχ(x)
Eq. 2-2

If the set of values χ can be is not countable, then it is a continuous random
variable. Now we talk about χ being less than or equal to a certain value ‘a’. The
cumulative distribution function changes from summation to integration and

Fχ(a) = P[χ≤x]
Eq. 2-3

2.3.2. Stochastic Processes

A stochastic process is a family of random variables {χ(t)} indexed by the time
parameter t. If the time index is a countable set, the process is a discrete time
process otherwise it is a continuous time process. The values or states that
members of {χ(t)} can take are the state space of the process. If the state space
is discrete, the process is called a chain.

As explained in the previous subsections, the behaviour of a system can often be
characterised by determining all the states in a system and by describing how the
system changes from one state to another. In general, systems such as these
can be described as a stochastic process.

 8

2.3.3. Markov Processes

In 1907 a Russian mathematician called A. A. Markov, described a class of
stochastic processes where [BK02]:

P[χ(t) = x | χ(tn) = xn, χ(tn-1) = xn-1,…, χ(t0) = x0] = P[χ(t) = x | χ(tn) = xn] where t > tn
> tn-1 >…>t0

Eq. 2-4

In other words, the future of the process from time tn onwards is determined only
by the present state. This condition is known as the Markov property. A Markov
process is a stochastic process for which the Markov property holds. An
implication of the Markov property is that the distribution of the sojourn time in
any state cannot depend on the time spent in that state,

P[χ ≥ y + s| χ ≥ s] = P[χ ≥ y]
Eq. 2-5

This condition places restrictions on the distribution of time spent in a state
[Kno96].

A Markov process is said to be homogeneous or stationary if it is invariant to
shifts in time i.e.

P[χ(t+s) = x | χ(tn+s) = xn] = P[χ(t) = x | χ(tn) = xn]
Eq. 2-6

2.3.4. Continuous-Time Markov Chains

A continuous-time Markov chain (CTMC) is a Markov process with a discrete
state space and a state that may change at any time. A stochastic process {χ(t)}
forms a CTMC if [Kno96]:

For all integers n and for any sequence t0, t1,…, tn, tn+1 with t0 < t1 <…<tn < tn+1 we
have,

P[χ(tn+1) = xn+1 | χ(t0) = x0, χ(t1) = x1,…, χ(tn) = xn] = P[χ(tn+1) = xn+1 | χ(tn) = xn]
Eq. 2-7

 9

The condition which restricts the distribution of sojourn times (Eq. 2-5) is only met
by the exponential distribution for CTMC’s. A homogeneous CTMC can be
represented by a set of states and an infinitesimal generator matrix Q where Qij
for i≠j is the exponential transition rate between state xi and state xj. The
parameter of the exponential sojourn time in state xi is –Qii where

Qii = -Σj≠iQij

Eq. 2-8

i.e. it is the negative sum of all the elements on that row of the matrix. As such
the sum of all the elements on a row of matrix Q is 0,

Σj Qij = 0 ∀i
Eq. 2-9

The most important step in a Markov chain analysis is to determine how much
time is spent in each state xj.

πj
(m) = P{χm = xj}

Eq. 2-10

is the probability of finding the Markov chain in state xj at time step m. If we have
a CTMC whose state probability distribution πj

(m) does not change when m → ∞,
the distribution is said to be stationary or said to have reached a steady state πj.
This can only be the case if, for a CTMC with infinitesimal generator matrix Q,

πQ = 0
Eq. 2-11

In a finite, homogeneous, irreducible CTMC, the limiting probabilities {πj} always
exist and are independent of the initial probability distribution. Also, the set {πj} is
a stationary probability distribution which can be uniquely determined by solving
the set of equations [Kno96]:

-qjjπj + Σi≠j qijπj = 0
Eq. 2-12

and

Σi πj = 1
Eq. 2-13

 10

These equations are sometimes called the global balance equations and they
can be rewritten in vector form as:

πQ = 0
Eq. 2-14

where π = (π1, π2,…) is the steady state probability vector, hence meeting the
condition of Eq. 2-11.

If we now look back to GSPN’s and their reachability graphs, it can be shown that
the sojourn time in a particular marking or state is independent of the time
already spent in that state. In fact, sojourn times are exponentially distributed.
Also, the probability of changing state is independent of the sojourn time. These
two facts imply that a GSPN describes a Markov process and analysis of the
GSPN can be carried out through analysis of the underlying Markov process.
Each state in the reachability graph can be regarded as a state of the
corresponding Markov chain. The firing rate λi of each transition ti labelling each
arc in the reachability graph marks the arcs in the corresponding Markov chain.

2.4. An Example

Consider the GSPN of Figure 2-4. This is a simple GSPN for which the
reachability graph can be easily determined and is shown in Figure 2-5. There
are no vanishing states in this example which is no surprise as there are no
immediate transitions.

Figure 2-4 A simple GSPN

 11

Figure 2-5 The corresponding reachability graph

Figure 2-6 The corresponding Markov chain

Using the information in the reachability graph we can create the corresponding
Markov chain, Figure 2-6, and immediately write down the infinitesimal generator
matrix Q as:

()
()

()

λ−λ
λλ+λ−λ

λλ−
λλ+λ−λ

λλλ+λ−
λλ−

=

22

1212

11

0202

0110

00

0000
000

0000
000
000
0000

Q

 12

To understand how the matrix has been composed we first number the states in
the Markov chain as indicated in Figure 2-6. Now each row index can be thought
of as the state an arc in the Markov chain is from and each column is the state
the arc is to. The element at the row-column intersection is then the rate of the
transition leading to that state change. Diagonal elements in the matrix are the
negative sum of the off-diagonals on that row i.e. each row will sum to zero. If a
state has an arc to itself, that rate can be ignored as clearly it will have no
influence at steady state.
Now we have Q, we need to solve the equation

πQ = 0
Eq. 2-15

for the steady state distribution π. The equation can be re-written as

QTπT = 0
Eq. 2-16

This is now in the form Ax = b, and there are many standard methods for solving
equations in this form including direct methods such as Gaussian elimination.
For our example, if we set the rates for all three timed transitions to 1.0 giving λ0
= λ1 = λ2 = 1.0 we get the following steady state solution:

=π
6
1

,
6
1

,
6
1

,
6
1

,
6
1

,
6
1

Now with a steady state solution in hand it is possible to continue and calculate
parameters such as the average number of tokens on a place, the token
probability distribution and transition throughput. This will not be shown here.

 13

3. State Space Exploration

3.1. A basic algorithm

The previous chapter covers all the material necessary to understand what is
involved in analysing a Generalised Stochastic Petri Net. PIPE is intended to be
a tool which can automate the analysis process of Petri nets and in this chapter
and the next we analyse how this automation can be carried out.

The first step in analysing any GSPN is to determine its reachability set or state
space. At first glance this may seem relatively simple. If we start in marking Mi
and keep a stack of states waiting to be explored (Sw) and a set of states that
have been explored (Se), the following algorithm lends itself to the task:

Figure 3-1 A simple state space exploration algorithm

In fact, this is almost exactly the algorithm used by the original GSPN analysis
module in PIPE. This algorithm is very simple to program and leads to a depth
first search (DFS) of the state space of the GSPN under consideration. As the
algorithm proceeds, information on the transitions between states can be
recorded at the same time as determining the successors to a state enabling the
creation of the infinitesimal generator matrix.

The stack of states waiting to be explored at any one moment in time is not
especially large and is limited by the depth of the reachability graph. As such it is
not normally an issue in terms of memory storage requirements. The set of
explored states however is another matter. It needs to hold enough information to
be able to determine whether the current state under scrutiny has been explored
before or is new and we have to be able to search through this information
quickly. Eventually, it will hold information on every single state in the state space
of which there could be hundreds of thousands if not millions. An efficient layout
and management of the set of explored states is needed.

push (Mi, Sw)
Se = {Mi}
while(Sw not empty)
 Mc = pop(Sw)
 determine all successors of marking Mc
 for each successor Ms
 if Ms ∉ Se

Push(Ms, Sw)
Se = Se ∪ {Ms}

end if
 for ends
while ends

 14

3.2. Memory and Time Efficient Strategies

3.2.1. A Linked List

The set of explored states is crucial in determining the entire state space. Any
scheme needs to record enough information on each state to be able to identify it
with a high level of confidence. The simplest solution is a linked list where each
node in the list gives a full description of the state.

Figure 3-2 The set of explored states as a linked list

This is very easy to program and as each node in the list describes a state
completely, you can be completely confident of correctly identifying whether a
state has been previously explored. As the number of explored states increases
however, the time it takes to search the list increases. Adding new elements to
the list can be kept to a constant time by just adding to the head of the list but on
average, searching the list will require N/2 comparisons for a successful search
(a search hit), i.e. the state has been found in the set of explored states, and N
comparisons for an unsuccessful search (a search miss) where N is the number
of nodes or explored states in the list. Even if the list were to be ordered in some
way, insertion, search hits and search misses would all take N/2 comparisons on
average [Sed98]. As the number of explored states could reach many hundreds
of thousands, the search time would rapidly become unacceptable and be the
most time consuming part of any GSPN analysis.

A further source of difficulty arises not from the linked list itself but from the fact
that each node carries a full description of a state. Whilst this guarantees correct
identification of states, the memory requirements become very significant. The
state descriptor would most likely be an array where the number of elements is
determined by the number of places in the Petri net. Each array element would
be an integer which in the case of the Java Virtual Machine is fixed to be 4 bytes
in size. This means that each array or state descriptor could easily be 100 bytes.
Even if we ignore the memory overhead for implementing a linked list, 100,000
states would call for almost 10Mbytes of memory and in general, n explored
states would require d×n bytes where d is the size of the state descriptor in

 15

bytes. Whilst most modern computer systems now include hundreds of
megabytes of RAM, this is still a significant amount of memory to be consuming.

3.2.2. A Hash Table with Full State Information

Dealing with issues of search time first, hash tables eventually come to mind as
they provide a good time-space trade-off [Sed98]. Using the state as a key into
the hash table provides very fast access. If we were not limited by memory, every
state could map to its own row in a hash table. However, we must make a
compromise and allow more than one state to map to a row in the hash table.
Each hash row then needs a scheme to cope with a collision on that row, i.e. the
fact that more than one state maps to it. If each row is made to be the head of a
linked list, we now have r smaller lists to search where r is the number of rows in
the hash table. This is the familiar hash table with separate chaining.

0

1

2
3

4

N

N-1

(1,0,0,2,3,1)

(1,0,0,2,3,0)(0,0,0,0,0,1)

(1,0,0,0,0,1)

(1,0,0,2,0,1)(1,0,1,2,3,1) Null

Null

Null

Null

Null

Null

Null

(1,0,1,0,0,0)

S t a t e D e s c r i p t o r us e d
a s k e y i n t o h a s h

t a b le

Figure 3-3 A hash table with separate chaining using the state descriptor as a key indexing

into the table

 16

Now search times become on average n/r comparisons for a search miss and
n/2r for a search hit where n is the number of states stored.

Coming back to memory requirements, we see that it has become even more of
an issue. Instead of one linked list, we now have the memory overhead of r
linked lists plus that of the hash table itself. Assuming each hash table row
requires h bytes, our memory consumption has increased from dn to dn+rh
bytes!

3.2.3. A Probabilistic Dynamic Technique

Instead of storing a full state descriptor, memory requirements could be reduced
in the hash table by storing a more compact description of a state. There are a
number of probabilistic techniques briefly described in [Kno96]. The first,
Holzmann’s bit state hashing, represents the table of explored states as a bit
vector. A hash function maps states to positions in this bit vector. Once a state
has been explored, the corresponding bit is set to 1 otherwise it is zero. The
problem with this technique is that there is no scheme for collision resolution. If
more than one state hashes to the same bit position, only one of them will be
recorded, the others will be erroneously discarded. To minimise the probability of
omission the ratio of states to hash table entries must be very low. This makes
the bit vector impractically large.

The second technique, Leroy and Wolper’s hash compaction, is to hash a state
to a compressed k bit key which is then used to map into a smaller hash table.
The details of this method are limited so it’s not clear how the compressed key is
used to map into the smaller hash table. The third technique covered is by Stern
and Dill and improves the omission probability of Leroy and Wolper’s method by
independently calculating the compressed value of a state and its hash value.

The final technique described in [Kno96] is the method now implemented in
PIPE2. It combines the probabilistic techniques briefly described above with the
dynamic storage allocation technique used in the exhaustive state space
exploration of section 3.2.2. Each row of the hash table still contains a linked list
but now each element in the list contains a compressed version of the state
rather than a full description of the state. Two independent hashing functions are
required. The first hash function h1 is used to determine which hash table row the
state belongs to. The second hash function h2 is used to create a compressed
state descriptor value. The steps for deciding whether a state s has already been
explored now become,

• Calculate the primary hash key h1(s) to determine the row of the hash
table,

 17

• Calculate the secondary hash key h2(s) to get the compressed state
descriptor and compare it to the state descriptors already in the table at
that row,

• If the compressed state descriptor is already present, the state is
considered to have been explored and nothing further needs to be done
with it, otherwise add the compressed state descriptor to the hash table
row, determine all the states successors and push them on to the stack of
states to be explored.

Figure 3-4 A hash table using compressed state descriptors

Now the probability of omission has been reduced as a state is deemed to have
been explored only if h1(s) and h2(s) equal that for a state already in the hash
table. It is still possible for two different states to be mistakenly identified as the
same but this will be the case with all probabilistic methods and is the price that
has to be paid if less memory is to be used. Memory requirements are now lower
than if a full state descriptor was used as the hash function h2 compresses a

 18

state to a single integer value. Comparing memory requirements to the case
where 100 bytes were needed for a full state descriptor, we now use 4 bytes and
this will be the case now matter how large the full state descriptor becomes!

We still need to consider how many rows we wish to have in our hash table. To
assist in distributing keys randomly, it is preferable to use a prime number for the
number of rows in the table. Dr. Knottenbelt in [Kno96] calculates the optimum
number of rows for storing 2million states using a 32bit key for an omission
probability of 0.01 as being 46566 rows. The 4812th prime is 465674 and this is
used in PIPE2 as the number of rows in the hash table.

3.2.4. The primary and secondary hashing functions h1 and h2

Most books on algorithms such as [Knu98] and [Sed98] cover hashing functions
in depth. Fundamentally, hashing functions transform keys, in our case the full
state descriptor, into an address in a table. They are normally simple arithmetic
processes but as is always the case with hashing functions, they must be
carefully chosen to distribute keys randomly and there is no single perfect
hashing function for all uses. There are two hashing functions used for the
explored states table in PIPE2. The primary hashing function, h1, maps a state to
a row in the hash table. The secondary hash function, h2, calculates a value from
the full state descriptor which acts as a compressed representation of the state.
Both the primary and secondary hashing functions use a process of summation
to generate the hash keys. The primary function converts a state s to a key as
follows:

s = {s1, s2, …, sn}

∑
=

=
n

1i
i1 stotal

∑
−

=

+=
1n

1i
i12 stotaltotal

…

1

1n

1i
in stotaltotal +=∑

−

=

∑
=

=

n

1i
i1 total)s(h

This algorithm is very easy to program as a simple ‘for’ loop as in Figure 3-5.
The secondary hashing function uses a similar algorithm but generates a
different hash key. Each summation totali in the primary hash function adds a
smaller and smaller subset of the state descriptor s to the previous total. The

4 Obtained from The Primes Database http://primes.utm.edu/nthprime/

 19

secondary hash function does the same but instead of removing the tail of the list
from the summation, it removes the head. This means the primary and
secondary hashing functions give different weights to each element in the state
descriptor. A small change in element sn would give a small change in the
primary hash function but a large change in the secondary hash function.

As PIPE2 is implemented in Java, we need to consider the high possibility of
overflow in the integer storing the running total as the hashing algorithm
progresses. This would manifest itself as the integer becoming negative as Java
has no unsigned integer data type. As the integer returned by the primary
hashing function will be used as an index into a hash table, it must be explicitly
wrapped round to zero again. This is not required for the secondary hashing
function as it is just used to identify a state and not index into a table.

Figure 3-5 A java method for calculating the primary hash key

A further step when using the primary hash key is to limit it to the range of the
number of rows in the hash table. This is carried out with simple modulo
arithmetic by the method calling the hashing function and not the hashing
function itself.

3.2.5. Vanishing State Elimination

Further space savings can be made during state space exploration. The basic
algorithm described in section 3.1 will keep track of both tangible states and
vanishing states. However, once the state space has been explored the
vanishing states are of little or no use in any analysis. A better algorithm would
eliminate vanishing states ‘on the fly’ and only tangible states would be recorded.
The transition rates of the vanishing states between two tangible states would be
combined into a single ‘effective transition rate’ as in Figure 3-6. An additional

public int h1(){
int total = 0;

 for(int offset = 0; offset < state.length; offset++){
 total = (2*total);
 for(int index = 0; index < (state.length - offset); index++){
 total += state[index];
 }
 }
 // As the above for loop results in massive integers
 // check we haven't overflowed and gone negative.
 // If we have then wrap round to zero.
 if(total < 0)
 total = Integer.MAX_VALUE+total;

 return total;
}

 20

benefit of vanishing state elimination comes in the form of reduced effort when
solving the steady state of the underlying Markov chain. PIPE2 uses a modified
version of the algorithm described in [Kno96] to perform a breadth first search of
the state space with vanishing state elimination, Figure 3-7. It uses a hash table,
Se, as described previously for the set of explored states, a queue Qt of tangible
states waiting to be explored and a stack Sv of vanishing states waiting to be
explored and then eliminated. Each object in the queue or stack is in the form of
a record <s,r> where s is the state and r is the associated rate of entry into that
state.

Figure 3-6 An example of vanishing state elimination

The algorithm begins by determining the initial tangible states of the system and
placing them in a queue, given an initial state si which could be vanishing. The
algorithm then proceeds to its second phase where tangible states are dequeued
in turn. As each tangible state is dequeued, its successors are determined by
firing all enabled transitions in turn. Any tangible successors are added to the
queue of tangible states to be explored later, vanishing states however are
added to the stack of vanishing states and immediately explored in depth first
search fashion. Any vanishing successors to a vanishing state are also pushed
on to the stack and explored immediately until a tangible successor is found
which can then be added to the queue. Vanishing states continue to be explored
until the stack is empty meaning all tangible successors have been found. Rates
of transition between tangible states are determined as the algorithm progresses
by using the information on the vanishing state stack together with two methods
‘prob(s,s’)’ and ‘rate(s,s’)’ to propagate transition probabilities through successive
vanishing states. The method prob(s,s’) calculates the probability of a transition
from a vanishing state s to another state s’, which could be tangible or vanishing.
The method rate(s,s’) calculates the rate of a transition from a tangible state s to
another state s’ which could be tangible or vanishing.

 21

Figure 3-7 The state space exploration algorithm used in PIPE2

/* Phase I: Initialise Qt with initial tangible states */
if (si is tangible)
 enqueue(Qt, si)
 Se = {si}
else
 push(Sv, <si, 1.0>)
 while(Sv not empty)
 pop(Sv, <v, p>)
 determine all successors to v
 for each successor v’
 if(v’ is tangible)
 if(v’ ∉ Se)
 enqueue(Qt, v’)
 Se = Se∪{v’}
 end if
 else
 p’ = p*prob(v,v’)
 if(p’ > ε)
 push(Sv, <v’, p’>)
 end if
 end if else
 end for
 end while
end if else
/* Phase II: State space exploration with vanishing state elimination */
while(Qt not empty)
 dequeue(Qt, s)
 determine all successors to s
 for each successor s’
 if (s’ is tangible)
 transition(s, s’, rate(s, s’))
 if (s’ ∉ Se)
 enqueue(Qt, s’)
 Se = Se∪{s’}
 end if
 else
 push(Sv, <s’, rate(s, s’)>)
 while(Sv not empty)
 pop(Sv, <v, p>)
 determine all successors to v
 for each successor v’
 p’ = p*prob(v, v’)
 if(v’ is tangible)
 if(v’ ∉ Se)
 enqueue(Qt, v’)
 Se = Se∪{s’}
 end if
 transition(s, v’, p’)
 else
 if(p’ > ε)
 push(Sv, <v’, p’>)
 end if
 end if else
 end for
 end while
 end if else
 end for
write s and and its tangible successors to disk for later use
end while

 22

At appropriate points, the algorithm records information for creating the
reachability graph through the use of a method called transition(s, s’, r). This
method records the fact that there is an arc in the reachability graph from
tangible state s, to tangible state s’ with effective transition rate r. The method
uses a list which temporarily records all the arcs in the graph from state s to its
tangible successors. Once all the tangible successors have been found and the
effective rates of transition to them determined, the list can be written to a file and
started again for the next tangible state to be explored. In this way, it does not
require any substantial amount of memory.

Whilst eliminating vanishing states, two special cases need to be considered.
One is the case of cycles of vanishing states as illustrated in Figure 3-8. As we
do not keep vanishing states in our explored states table, it is not possible to tell
that a certain vanishing state has been seen before. One possibility suggested in
[Kno96] is to keep a local stack of explored vanishing states and then apply
traditional matrix arithmetic methods to reduce the infinitesimal generator matrix
locally. Another simpler method is to deal with cycles by simply dropping
vanishing states whose propagated effective entry rate falls below a certain
threshold value, ε. This is the method implemented in the algorithm of Figure 3-7.

Figure 3-8 An example of a cycle of vanishing states [Kno96]

The second special case that must be considered is again a cycle of vanishing
states, Figure 3-9. However, in this case the propagated probability never falls
below zero. Cycles such as this are referred to as timeless traps. In these cases,
analysis of the underlying Markov chain and hence of the GSPN is impossible. A
technique is needed to catch timeless traps. Although not shown in the algorithm
of Figure 3-7 for reasons of clarity, PIPE2 keeps a count of the number of
attempts to clear the stack of vanishing states. If the number of attempts rises

 23

above a value θ, it is assumed a timeless trap has been found and state space
exploration is aborted.

Figure 3-9 An example of a timeless trap [Kno96]

 24

4. Steady State Solution

4.1. Direct Methods

Exploring the state space and determining the reachability graph is just the first
step in analysing a GSPN. The next stage is the calculation of the steady state
distribution π. As explained in section 2.3.4, this involves solving the set of
equations:

πQ = 0, Σi πj = 1
Eq. 4-1

Before solving the set of equations in Eq. 4-1, they are re-arranged as shown in
section 2.4 to give an equation in the form Ax=b.

QTπT = 0
Eq. 4-2

There are a number of techniques for solving equations in this form. The most
familiar perhaps is Gaussian-Elimination. This involves adding multiples of rows
to one another to reduce the augmented matrix [A | b] to an upper triangular
matrix [U | c] and then following this with back substitution to solve for π. There is
a problem with this technique however in that it only applies in the case where
matrix A is non-singular. This is not the case in this instance and as such the
matrix A has to be modified to make it singular. There are two approaches that
can be taken, ‘replace an equation’ and ‘remove an equation’. These are
described in detail in [Kno96] and will not be covered here. Once one of these
steps has been taken it is then of course possible to proceed with Gaussian
elimination as normal to calculate the steady state.

Other direct methods for solving equation Eq. 4-2, are LU decomposition and
Grassman’s algorithm. Both are related to Gaussian elimination and have some
advantages in terms of greater accuracy with regards to the double precision
arithmetic.

4.2. Iterative Methods

Instead of solving equation Eq. 4-2 using direct methods like those in the
previous section, one of many iterative methods could be used.

 25

4.2.1. Jacobi’s Method

Solving equation Eq. 4-2 actually involves solving n equations of the form:

∑
=

=

n

1j
ijij bxa i=1,2,…,n

Eq. 4-3

This can be re-arranged to solve for the individual xi values as follows:

 −= ∑

≠ij
jiji

ii
i xab

a
1

x

Eq. 4-4

This suggests iteration as follows:

 −= ∑

≠

+

ij

)k(
jiji

ii

)1k(
i xab

a
1

x

Eq. 4-5

where k ≥ 0 and x(0) is an initial guess at the solution.

4.2.2. Gauss-Siedel

An improvement upon Jacobi’s method would be to use the newly calculated
value of xi, as soon as it was available, in all the later equations. This is how
Gauss-Siedel’s method works.

∑ ∑
< >

++
−−=

ij ij

)k(
jij

)1k(
jiji

ii

)1k(
i)xaxab(

a
1

x

Eq. 4-6

Gauss-Siedel results in faster convergence to the solution of the steady state
vector.

4.3. Efficient Memory Utilisation and Computation

The infinitesimal generator matrix Q requires a substantial amount of memory. It
is an nxn matrix where n is the number of tangible states. Each element in the
matrix is a double precision floating point number which in Java is 8 bytes. Even
if there are just 1000 tangible states, this would result in a matrix which is
approximately 8Mbytes in size! The matrix would become impossible to hold in
memory even for a relatively small number of states. However, a useful

 26

observation can be made about the infinitesimal generator matrix Q. It is a
sparse matrix i.e. most of its elements are zero. Given that this is the case, there
is actually no need for an nxn matrix, we only need to hold non-zero entries.
PIPE2 uses the sparse matrix scheme illustrated in Figure 4-1. It also
incorporates a further observation; the iterative methods outlined above require
column access to the matrix Q due to the matrix being transposed before solving
for the steady state. In the scheme used by PIPE2 an array of linked lists is used
where each list represents a column of matrix Q. Each list contains nodes which
record the row they represent, and the value for that row. Only non-zero
elements are placed in a list.

0

1

2

3

4

N

N-1

Null

Null

Null

Null

Null

Null

Null

c o lum n

R o w
1

V a l
2.5

R o w
5

V a l
1.23

R o w
11

V a l
0.12

R o w
9

V a l
1.0

R o w
1

V a l
2.5

R o w
16

V a l
2.5

Figure 4-1 The sparse matrix scheme used in PIPE2

Direct methods can make using this scheme awkward as they modify the matrix
as they progress. Iterative methods suffer from no such problems as they do not
change the matrix Q or A as it has now become. They only modify the solution
vector x which is a normal matrix. An additional benefit of the sparse matrix
scheme with iterative methods is that there are no longer any computations on
elements which are actually zero. This results in more efficient computation of
the end result.

 27

PIPE2 uses Gauss-Siedel approximation for solving the steady state solution. To
decide whether the values in the steady state vector have converged the
following checks are made:

• The residuals |-QTx| are checked to see how close to zero they are. The
closer they are, the more accurate the result.

• All elements in the steady state vector should be ≥ 0

Once both these tests are passed, the steady state vector is normalised to 1 to
meet the requirement,

Σi πj = 1
Eq. 4-7

Further memory efficiency can be achieved by observing that many of the rates
in the matrix Q will be the same. Instead of each element storing its associated
rate, it could point into a table of rates. This however has not been implemented
in PIPE2.

 28

5. Results

5.1. State Space Exploration
PIPE2 fully implements the state space generation algorithm described in section
3. It was tested with examples from [BK02] amongst others.

5.1.1. A simple GSPN
This contrived GSPN was solved as an example in section 2.4. The Petri net and
its reachability graph are shown once again in Figure 5-1 and Figure 5-2. Each
transition has a rate of 1.0.

Figure 5-1 A simple GSPN

From the reachability graph we can identify all the tangible states. In fact in this
particular example, all the states are tangible. PIPE2 correctly identifies the 6
tangible states as can be seen in the screenshot in Figure 5-3.

(2, 0, 0)

(1, 1, 0)

(0, 2, 0)(1, 0, 1)

(0, 1, 1)

(0, 0, 2)

t1

t2 t1

t1 t2

t3

t3

t2

t3

Figure 5-2 The associated reachability graph

 29

Figure 5-3 The results window from PIPE2 after analysing the GSPN of Figure 5-1

5.1.2. A GSPN with Vanishing States
This example of a GSPN is taken from [BK02]. The GSPN can be seen in Figure
5-4 with its associated reachability graph in Figure 5-5. Each transition ti has a
firing rate i. The only tangible states are M6, M7 and M8 the rest are all vanishing
states.

 30

Figure 5-4 A simple GSPN with Vanishing States, transition ti has firing rate i [BK02]

Figure 5-5 The associated reachability graph [BK02]

In Figure 5-6, we can see PIPE2 has correctly identified the three tangible states
which it labels as M0, M1 and M2 and eliminated the vanishing states.

 31

Figure 5-6 The results from PIPE2 after it has analysed the GSPN of Figure 5-4

5.1.3. The Courier Protocol Software GSPN
A more demanding example, Figure 5-7 was also used to test PIPE2. [Kno99]
gives details of a GSPN which models the software used in the Courier
telecommunications protocol. The GSPN models the ISO application, session
and transport network layers from a sender, p1 to p26, to a receiver, p27 to p46.
This is a large GSPN with 45 places. It is an excellent model to test PIPE2 with
as there are two important parameters in the transport layer which can be used
to vary the size of the underlying reachability graph. The first parameter is the
sliding window size n (p14), the second parameter is the transport space m
(p17). For the purpose of testing PIPE2, m was kept constant at 1 and n was
varied. The transition rates are obtained from [Kno99] and are shown in Table
5-1.

 32

Figure 5-7 The Courier Protocol GSPN Model

 33

Timed Transition Rate Value
r1
r2
r3
r4
r5
r6
r7
r8
r9

r10

5000/0.57
5000/4.97
5000/1.09

5000/10.37
5000/4.29
5000/0.39
5000/0.68
5000/2.88
5000/3.45
5000/1.25

Immediate Transition Weight Value
q1 vs. q2 1.0 vs. 1.0

Table 5-1 Transition rates and weights in the Courier Protocol GSPN model [Kno99]

Increasing the number of tokens on p14 (i.e. increasing n) will result an increase
in the number of states in the reachability graph and hence an increase in the
number of tangible states as in Table 5-2.

Tokens on p14 (n) Number of Tangible
States

Number of Arcs in
Reachability Graph

1 11,700 48,330
2 84,600 410,160
3 419,400 2,281,620
4 1,632,600 9,732,330

Table 5-2 The number of tangible states and arcs in the reachability graph for varying n
[Kno96]

PIPE2 was tested with increasing values of n to see if it correctly determined all
the tangible states and found the correct number of arcs between them. The
results are only summarised when there are more than a certain number of
tangible states so individual tangible states are not shown. In each case, PIPE
found the correct number of tangible states and arcs between them.

 34

Figure 5-8 Feedback from PIPE2 in the console window after exploring the state space for

the Courier Protocol GSPN model with n = 3

5.2. Steady State Solution

5.2.1. A Simple GSPN
For testing PIPE2’s steady state analysis capabilities, the same examples as
from section 5.1 have been used. The first is the simple contrived example
GSPN first described in section 2.4. We saw that the steady state distribution for
this GSPN was,

=π
6
1

,
6
1

,
6
1

,
6
1

,
6
1

,
6
1

Figure 5-9 shows the results window from PIPE2 after analysis of this GSPN has
completed and it can be seen to have determined the steady state distribution
correctly.

 35

Figure 5-9 The results window from PIPE2 after analysing the GSPN of Figure 5-1

5.2.2. A GSPN with Vanishing States
This GSPN has been described in the previous section and is taken from [BK02].
The correct steady state distribution for this GSPN is given as,

=π
301
225

,
301
60

,
301
16

In Figure 5-10 we can see that PIPE2 has in fact calculated the correct steady
state distribution even for a GSPN where it has eliminated vanishing states ‘on
the fly’. This indicates that the algorithm for replacing clusters of vanishing states
with an effective transition rate between the tangible states is correct.

 36

Figure 5-10 The results from PIPE2 after it has analysed the GSPN of Figure 5-4

[BK02] also calculates the transition throughputs. This is a capability also present
in the GSPN analysis module in PIPE2 although PIPE2 can only calculate
throughput for timed transitions due to data for vanishing states being replaced
by effective transition rates. The results are compared in Table 5-3.

Timed Transition Published Results Calculated results
t4 4.0 4.0
t5 380/301 1.26246

Table 5-3 Transition throughputs for the GSPN of Figure 5-4

5.2.3. The Courier Protocol Software GSPN
The courier protocol GSPN has been described in the previous section and is
once again useful for testing PIPE due to the scalability of the underlying Markov
chain and availability of published performance data. Due to the large number of
tangible states even in the case where the sliding window size n is 1 (the number
of tokens on p14), PIPE2 does not display the steady state distribution. Instead,
only the statistical data calculated using the steady state distribution is displayed.
PIPE2 calculates the average number of tokens on a place, the token probability

 37

density i.e. the probability of there being πI token’s on place i, and also the
throughput of timed transitions. [Kno99] re-prints performance measures first
published by Woodside and Li in [WL91]. Woodside and Li suggest the following
performance measures:

• λ - the data throughput rate which is given by the throughput of transition
t21,

• The following task utilisation parameters
o Ptransp1, the probability that transport task 1 is idle i.e. P[π12=0]
o Similarly Ptransp2, i.e. P[π32=0],
o Psess1, Psess2 for p6 and p41
o and finally Psend, Precv for p1 and p46

The results can be seen in Table 5-5 and can be seen to agree exactly. The
results are only calculated up to n=2 as although PIPE2 was able to generate the
tangible states and reachability graph, there was insufficient memory to hold the
infinitesimal generator matrix for calculating the steady state despite the memory
efficient sparse matrix scheme used. This is a known problem and more
advanced Petri net analysers such as DNAmaca use disk based schemes for
holding large matrices.

 n=1 n=2 n=3 n=4 n=5 n=6
λ 74.3467 120.372 150.794 172.011 187.413 198.919

Psend 0.01011 0.01637 0.02051 0.02334 0.02549 0.02705
Precv 0.98141 0.96991 0.96230 0.95700 0.95315 0.95027
Psess1 0.00848 0.01372 0.01719 0.01961 0.02137 0.02268
Psess2 0.92610 0.88029 0.84998 0.82883 0.81345 0.80197
Ptransp1 0.78558 0.65285 0.56511 0.50392 0.45950 0.42632
Ptransp2 0.78871 0.65790 0.57138 0.51084 0.46673 0.43365

Table 5-4 Published performance measures for the Courier Protocol Software

 n=1 n=2
λ 74.3467 120.372

Psend 0.01011 0.01637
Precv 0.98141 0.96991
Psess1 0.00848 0.01372
Psess2 0.92610 0.88029
Ptransp1 0.78558 0.65285
Ptransp2 0.78871 0.65790

Table 5-5 Computed performance measures for the Courier Protocol Software

 38

6. Other Work

6.1. Bug Fixing
There were a number of small but serious bugs with PIPE2 before work began
on this project. These had to be fixed before any other improvements could be
made to PIPE2. This meant understanding the work written by two previous
group project teams much of which was uncommented in any way. There was a
large amount of redundant and inefficient code which also had to be scrutinised
carefully to find the source of bugs.

6.1.1. File Save Bug
The first serious bug present in PIPE2 would manifest itself when saving files. If
the option ‘Save As…’ was chosen, files would be saved correctly under the
chosen name. If an existing file was to be saved using the same filename, the
user would correctly choose the option ‘Save’ rather than ‘Save As…’, however
the file would now not be guaranteed to save. This obviously was a serious
problem. The bug was eventually tracked down as being an unnecessary and
also incorrect test in an ‘if’ statement. File saves now take place whenever the
option ‘Save’ is selected rather than being a game of Russian roulette.

6.1.2. Edit Arc Weight Bug
Editing arc weights would result in an error message claiming that a number had
not been entered. This was nonsense and on repeating exactly the same steps a
second time, no error would occur and the arc weight would change correctly.
The bug was actually due to objects being added to the window container
multiple times instead of just once but the exception handling was so poor that all
exceptions were given the same error message. Once exception handling was
improved, it was possible to track down the source of the bug and fix it.

6.1.3. Invariant Analysis Bug
One of the pre-existing Petri net analysis modules is ‘Invariant Analysis’. This is
an analysis which can be carried out on basic Petri nets and as the name
suggests, it determines the invariants of a Petri net.

There were two issues with the invariant analysis module. The first was that the
identifiers used in the display window for places and transitions did not then get
used when reporting back the invariant equations making it impossible to know
which places and transitions the invariant equations were referring to. This can
be seen in Figure 6-1 and Figure 6-2. The P-Invariant equations in the results
window refer to places such as p0 but there is no such place in the place-
transition net!

 39

The second issue with the invariant analysis module was that once a Petri net
was loaded, any changes to the net were not reflected by changes in the
invariant analysis! The file would have to be saved and reloaded for any changes
to be recognised by the analysis routine.

Both the bugs in the analysis module have now been rectified. Results now use
the same labels as are present on the Petri net itself and analysis now takes
place on the net as it is currently without any file save and reload needing to take
place.

Figure 6-1 A simple Place-transition net

 40

Figure 6-2 The results from invariant analysis of the Place-transition net in Figure 6-1

6.1.4. HTML File Save Formatting
Any analysis modules added by the 2004 group project team use HTML
formatting in the results window. This has greatly improved the look of the
analysis modules. An additional feature is the ability to save results as an HTML
file for later use. This is an excellent addition to PIPE2 but unfortunately, it has a
bug which results in all the HTML style information being lost when writing to a
file. This actually appears to be a bug in the Java class JEditorPane. It has a
method ‘getText()’ which should return all the text in a JEditorPane window.
However, from some reason it does not return any of the text between the
<Head> tags even though it returns the tags themselves. As this is where the
style information resides, all the style information is lost. This has had to be fixed
with a workaround which adds all the style information in again before writing to a
file.

 41

6.1.5. Code Optimisation

Whilst reading through the code, a number of areas where code could be
optimised were identified. As an example, on many occasions, ‘for’ loops were
found to be very inefficiently programmed. In general they took the form of Figure
6-3.

Figure 6-3 Example area of code suitable for optimisation

At first this might seem a perfectly reasonable piece of code. The problem
actually was down to the method labelled as method_b(). This method would
carry out a long complex computation and create an entire Boolean array of
results. It would then return just one value from this array and discard the rest.
The rest of the for loop would then test this result. However, each time around
the loop, method_b() would have to recalculate the same array which could
require a few thousand calculations. The loop was re-organised to take
method_b() out of the loop, it would be calculated just once and the entire array
returned for testing within the loop. This type of code was found in numerous
places. Other ‘interesting’ programming practices were to have multiple methods
all carrying out exactly the same calculations but just returning a different step in
the process. These were combined into a single method with a simple clear ‘if’
statement to decide which step in the process should return a result.
Most code was found to be completely uncommented. Whenever it was possible,
comments were added in to make it easier for future developers to work on the
code.

6.2. User Interface Enhancements
A large amount of time was spent on user interface enhancements. These are
centred on the arc drawing tool. Whilst this functions correctly, it was lacking
features which would make drawing Petri nets an easier process. When drawing
an arc between a place and a transition or vice versa, the user would need to
have decided before-hand how many points there would need to be on an arc for
later manipulation. For example, if the user were to draw an arc straight from a
place to a transition and then decide that it needed to be drawn via a different
route, the user would only have the option of deleting the arc and starting again.
If it was found that further manipulation points were needed, once again the arc
would have to be deleted and started again. In Figure 6-4, we see a Petri net as
it has been originally drawn. The user has decided to change the path of the arc
from T1 to P0 to pass around the outside of the net however there are only two

for(int i, i < x, i++){
 a = method_b(i)
 if(a == true){
 …
 }
}

 42

manipulation points on the arc, the start and end point. These cannot be moved
and the only other options for that arc are shown in the pop-up menu to be
‘delete’ the arc or edit the weight of the arc. As such the only choice for the user
is to delete the arc and start again. Even if the user had had the foresight to draw
the arc using 3 points, there would be no options for adding more points if
needed. Whilst this may not seem like a big issue when drawing a net like that of
Figure 6-4, it will clearly hinder progress when drawing a net like that of the
courier protocol GSPN model shown previously in Figure 5-7.

There are now two features which have been added to the arc drawing tool. One
allows a point on the arc to be split into two points. The second feature splits a
segment of an arc into two at the halfway point. Both these feature’s work
whether the arc is currently straight or curved and appear in the pop-menu in the
correct context i.e. if the user selects an arc segment then the ‘Split Arc
Segment’ menu option appears as shown in Figure 6-5.

Figure 6-4 The user has selected the arc highlighted in blue. The squares are the available

manipulation points.

 43

Arcs in PIPE2 are surprisingly complex. Three classes are involved, ‘Arc’,
‘ArcPath’, and ‘ArcPathPoint’. An instance of Arc has an associated ArcPath
object. An ArcPath object holds a list of ‘ArcPathPoint’ objects. The split point
feature involved identifying the currently selected ArcPathPoint object,
duplicating it as another instance, offsetting the co-ordinates of the new instance
slightly, and then adding it in at the appropriate point in the list of points held by
the ArcPath object. The window then had to be notified to re-draw the arc so the
new point would appear.

Splitting an arc segment is a more complex task. Unfortunately, the way arcs are
structured in PIPE2 is perhaps not the best way. It would possibly have been
better to have a class called ArcSegment. This class would then hold two
ArcPathPoint instances for the start and end point of a segment. The ArcPath
class would then hold a list of ArcSegment objects. There are many advantages
to structuring arcs in this manner. First of all, Java’s CubicCurve2D class in
package java.awt.geom could then have been used to calculate the Bezier
curves for curved arcs. Currently, one of the Arc classes has been written to
actually calculate Bezier curves itself.

Figure 6-5 The user can now split an arc segment in to two

 44

A second benefit of this alternative structure is that arc segments could then be
selected by a user as actual objects in a net just as the complete arc and
ArcPathPoints are. Once this could be done, splitting an arc segment would be
the same process as splitting an arc path point.

This restructuring of the classes making an arc in a Petri net model was
attempted. Unfortunately, it was found that the classes involved in arcs were
closely coupled to the classes Place and Transition! The reasons for this are that
arcs enter or leave places and transitions at specific angles. Arcs always leave
places radially outwards and enter and leave transitions at an angle determined
by how many other arcs are entering or leaving that edge of a transition. Whilst
this is correct, the previous group project team have made design decisions
which have resulted in the place or transition classes actually manipulating arcs
instead of providing arc objects with information that allows them to do the work
themselves. It very soon became clear that to change the structure of arcs would
require a major re-write of too much code for the time available.

An alternative method had to be found to enable a ‘Split Arc Segment’ feature to
be added. A brute force approach was used. When the user clicks on an arc, it is
possible to get the mouse co-ordinates. If the user then chooses to split an arc
segment, all the points on the arc are compared as pairs in sequence. Each pair
has a straight line calculated between them and then the distance from the
mouse co-ordinates to the mid-point of each line is calculated. The line which
results in the shortest distance to the mouse co-ordinates is then considered to
have the correct two points bounding the segment the user wishes to split.

Figure 6-6 The process of splitting an arc segment

Now an extra ArcPathPoint object is created at the midpoint between the points
for the selected segment and is added to the ArcPath using the same process as
described previously for splitting an ArcPathPoint. This process works very well
and is now implemented in PIPE2.

Straight lines are
calculated
between pairs of
points on the arc.

The user has
clicked the
mouse at the
red dot.

 45

6.3. Product Marketing

In addition to the original requirements, a new website has been created to
market PIPE2. From the website it is possible to download the latest release of
PIPE2 and also read about the software and Petri nets in general. It can be found
at:

http://pipe2.sourceforge.net/

Figure 6-7 The PIPE2 Website

 46

7. Conclusion & Future Work

7.1. Summary

This project has been very successful in meeting all its aims and more. The initial
tasks for the project were:

• Fix a number of moderately serious bugs in the user interface
- Saving files did not always work
- The invariant analysis module did not give the correct analysis

results and did not use the correct labels for the results
- Changing arc weights resulted in an error which was nonsensical
- Other as yet unknown bugs that may be found along the way

• Improve the arc editing tool. The options for editing an arc once it was
drawn were limited and consisted of being able to delete an arc or change
its weight.

• Improve the GSPN analysis capability. The existing capability was so
severely limited that it was useless and all analysis of any real models had
to be handed off to DNAmaca.

First of all, the bugs listed were found and eradicated. A number of additional
bugs were found as work progressed and were removed. At the same time, code
was optimised wherever possible and comments were added in to make it easier
for future developers to work on PIPE2.

The arc editing tool is now much easier to use. Complex Petri nets such as that
for the courier protocol software model are now much easier to draw. The
difficulty now lays in the complexity of the model itself and not the tools for
drawing the model.

The most important improvement to PIPE2 however is in the GSPN analysis
capabilities. PIPE2 was capable of modelling and analysing Generalised
Stochastic Petri nets. However, its analysis capability was very severely limited.
It could handle at most 1000 states. Not only could it only manage a small
number of states, it would incorrectly reject valid GSPN’s as being invalid.
Furthermore, the analysis was very slow. The original analysis module was
compared to the new module for a relatively small model containing just 53
states. The original analysis module took 2minutes 30seconds, PIPE2 can now
analyse the same model in 1.5 seconds, 1% of the time it used to take! Also, the
number of states the module can deal with is greater than 1million. On this front
however there has been some disappointment. Although the state space
exploration can cope with over 1million states, the steady state analysis can’t
keep up. Using the courier protocol GSPN model as an example, scaling the
model to 419,400 states leads to over 2.2million arcs in the state graph. Even
using the memory efficient sparse matrix scheme, this becomes unwieldy and

 47

memory soon cannot be allocated to hold the whole matrix. This is a problem
which has been studied before and schemes exist for coping with this.

In addition to the original project requirements, a website has been created for
marketing PIPE2.

7.2. Future Work

There are still a number of ways PIPE2 could be improved which should provide
very interesting future software projects. The most obvious extension would be to
add a disk based scheme for holding the sparse infinitesimal generator matrix.

Another very useful extension to PIPE2 would be the capability to have token
dependent transition rates. This would require users to be able to enter
expressions like ‘#(P1)’ meaning the rate is the same as the number of tokens on
place P1 or ‘min(x,y)’ meaning the rate is the minimum of x or y where x and y
could also be expressions, for every transition.

The way results are presented could also be made to depend on expressions.
Instead of just displaying statistics such as token probability distribution or
transition throughput, perhaps the user could request that these results are used
to calculate further performance statistics they specify by being able to enter an
expression along the lines of:

x = 400*Throughput(t1) + 600*Throughput(t2)

The results window would then automatically display the value of x.

These should all be interesting and challenging projects.

 48

Appendix A – User Guide
The following pages provide a brief guide to installing PIPE2 and also using the
GSPN analysis module.

Installation
PIPE2 can be downloaded from the following location:

http://pipe2.sourceforge.net

The file is a compressed ‘zip’ file and has to be extracted using an appropriate
utility for your operating system. On Microsoft Windows based systems, the
commercial tool ‘WinZip’ can be used although there are also free tools available.
On Linux and other Unix based systems the command line tool ‘unzip’ can be
used. Once the files have all been extracted, PIPE2 can be started from the
command line as follows:

On Linux: java -cp ~/yourpath/pipe/bin RunGui

On Windows: java -cp "yourpath\pipe\bin" RunGui

where ‘yourpath’ is replaced by the path to the extracted files that you specified
during the extraction process. The above assumes you have Java installed, this
can be obtained from Sun Microsystems at the website:

http://java.com

Analysing a GSPN
Some example Petri nets are included with PIPE2. Select ‘Example Nets’ from
the ‘File’ menu as in Figure A-1. Select the Petri net ‘Classic GSPN’. This will
now open in the main window of PIPE2 and should look like Figure A-2. Now
double click on ‘GSPN Analysis’ in the analysis module manager. In a few
seconds, a results window should appear and your GSPN analysis is complete.
For more complex models that take longer to analyse, progress can be checked
by looking at the console window where continuous feedback is provided.
Analysis results can be saved for future reference by selecting ‘Save’ in the
results window.

 49

Figure A-1 Choosing an example Petri net

 50

Figure A-2 Selecting the GSPN Analysis module

 51

Figure A-3 The analysis results window

 52

Bibliography

[BC+03] J. Bloom, C. Clark et al Platform Independent Petri Net Editor Group Project Final
Report, University of London, Imperial College of Science Technology and Medicine, March 2003

[BC+04] T. Barnwell, M. Camacho et al Petri Net Analyser – Group 4 Project Final Report,
University of London, Imperial College of Science Technology and Medicine, March 2004

[BK02] F. Bause and P.S. Kritzinger Stochastic Petri Nets, An Introduction to the Theory 2nd
Ed. Vieweg 2002 ISBN 3-528-15535-3

[Kno96] W.J. Knottenbelt Generalised Markovian Analysis of Timed Transition Systems MSc
thesis, University of Cape Town, June 1996

[Kno99] W.J. Knottenbelt Parallel Performance Analysis of Large Markov Models PhD thesis,
University of London, Imperial College of Science Technology and Medicine, December 1999

[Knu98] D.E. Knuth The Art of Computer Programming Volume 3: Sorting and Searching 2nd Ed.
Addison-Wesley 1998 ISBN 0-201-89685-0

[Sed98] R. Sedgewick Algorithms in C, 3rd Ed. Addison-Wesley 1998 ISBN 0-201-31452-5

[WL91] C.M. Woodside and Y. Li Performance Petri Net Analysis of Communication Protocol
Software by Delay Equivalent Aggregation Proceedings of the 4th International Workshop on Petri
Nets and Performance Models, pages 64-73, Melbourne Australia, 2-5 December 1991 IEEE
Computer Society Press

